PhysicsAnd Physics And Physics	dMaths]	utor.com			
Please check the examination det				didate inforn	nation
Candidate surname			Other name	es	
Pearson Edexcel International Advanced Level	Centre	Number		Candidate	e Number
Sample Assessment Materials fo	or first te	aching S	eptember	2018	
(Time: 1 hour 30 minutes)		Paper Re	eference V	VME02	/01
Mathematics International Advanced Subsidiary/Advanced Level Mechanics M2					
You must have: Mathematical Formulae and Sta	tistical 7	ables, cal	culator		Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

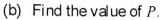
Information

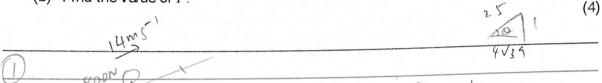
- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

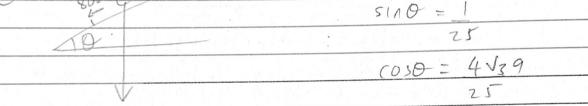
Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶




1. A car of mass 900 kg is travelling up a straight road inclined at an angle θ to the horizontal, where $\sin\theta=\frac{1}{25}$. The car is travelling at a constant speed of 14 m s⁻¹ and the resistance to motion from non-gravitational forces has a constant magnitude of 800 N. The car


takes 10 seconds to travel from A to B, where A and B are two points on the road.

(a) Find the work done by the engine of the car as the car travels from A to B. (4)

When the car is at B and travelling at a speed of $14\,\mathrm{ms^{-1}}$ the rate of working of the engine of the car is suddenly increased to P kW, resulting in an initial acceleration of the car of $0.7\,\mathrm{m\,s^{-2}}$. The resistance to motion from non-gravitational forces still has a constant magnitude of $800\,\mathrm{N}$.

$$|6|39.2 \times 10| = |6|3|92J$$
.
= |6| kJ

-			
		 6 9	6 0

Question 1 continued 9000 900 x0.7

£ 25 kW

2. A particle P of mass 0.7 kg is moving in a straight line on a smooth horizontal surface. The particle P collides with a particle Q of mass 1.2 kg which is at rest on the surface. Immediately before the collision the speed of P is 6ms⁻¹. Immediately after the collision both particles are moving in the same direction. The coefficient of restitution between the particles is e.

(a) Show that $e < \frac{7}{12}$ (7)

Given that $e = \frac{1}{4}$

(b) find the magnitude of the impulse exerted on ${\cal Q}$ in the collision.

(3)

	(9)
(3) · (P) (P)	1/2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.7kg 1.2kg.	V1 = 6e + 4.2-7.2e
6m(-1	4.20+4.2 = V2.
VI VZ	(- 9
	1/1/V/->0>0
V2-V1 = e.	4-20+4-2 30.
6	4-2-7-20 30
V2-V1=6e.	1-9
V2 = 6et V1	4.2 > 7.20
6-7(6) = 0.7(V,)+1.7(V)	42)4.6
1. 0 0 7V 11 0V	7 > e
4.2 = 0.7V, +1.2V2.	4.12 2.78 50
4.2 = 0.7 V, +1.2 (6e+4)	
11.2 = 0.71/1.21/172.	25.36
$4.2 = 0.7V_1 + 1.2V_1 + 7.2e$	
1.9V, = 4.2-7.2e.	
V, = 4.2-7.2e	
1.9.	

95

2-7.2(0.25

,9

12

24

-24

63 NS.

9.

required

25/	
$\mathbf{p}\langle$	
\cong	
- X	
22	
=	
4//	
- >>	
$\propto \sim$	
Z/)	
$\rightarrow >$	
40	
-X	
20	
₹(
÷.\\	
≶ ≫	
\times	
11	
• XO	

=	
X	
11	
- X	
/X	
~//	
<u>5</u> }	
38	
$-\infty$	
- 7 人	
V/)	
\sim /	
VV.	
11.	
1.11	
113	
/ X	
1/2	

`	$\frak{\times}$	
2	8	
5	\gg	
2		
	×	
	×	

ΧŻ	
8	
8	
Š	
Š	

5		l	
5		l	
	1		

3. At time t seconds ($t \ge 0$) a particle P has velocity vms^{-1} , where

$$v = (6t^2 + 6t)i + (3t^2 + 24)j$$

When t = 0 the particle P is at the origin O. At time T seconds, P is at the point A and $\mathbf{v} = \lambda(\mathbf{i} + \mathbf{j})$, where λ is a constant.

Find

(a) the value of T,

(3)

(b) the acceleration of P as it passes through the point A,

(3)

(c) the distance OA.

(5)

V= (6t2+6t); + (3+2+24)

6t2+6t=>

3+2+24=>.

6+2+6+=3+2+24.

3+2+6+-24=0.

-6+ V62-4(3)(-24)

2×3

t=-4 or t=2.

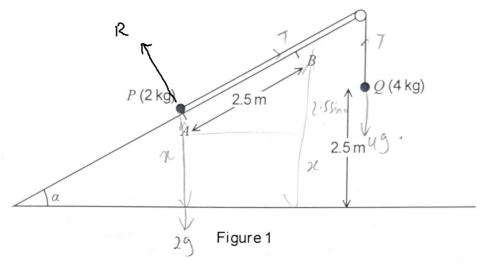
4

N/A

T=2

Leave blank

Question 3 continued


$$(2t^3+3t^2)i+(t^3+24t)j$$

(Total 11 marks)

Q3

4.

Two particles P and Q, of mass 2 kg and 4 kg respectively, are connected by a light inextensible string. Initially P is held at rest at the point A on a rough fixed plane inclined

at α to the horizontal ground, where $\sin \alpha = \frac{3}{5}$. The string passes over a small smooth

pulley fixed at the top of the plane. The particle Q hangs freely below the pulley and 2.5 m above the ground, as shown in Figure 1. The part of the string from P to the pulley lies along a line of greatest slope of the plane. The system is released from rest with the string taut. At the instant when Q hits the ground, P is at the point B on the plane. The coefficient of friction between P and the plane is $\frac{1}{4}$.

(a) Find the work done against friction as P moves from A to B.

(4)

(b) Find the total potential energy lost by the system as P moves from A to B.

(3)

(c) Find, using the work-energy principle, the speed of P as it passes through B.

(4)

Q Loss in PE - gain in RE = wd $\frac{1}{3}$ R = 2g + 4 = 89 $F = 8g \times 1 = 2g \rightarrow \text{frition}$ $\frac{1}{3}$ Wd = $\frac{1}{3}$ Sind=3 V = 1 4 V = 1 4

5.

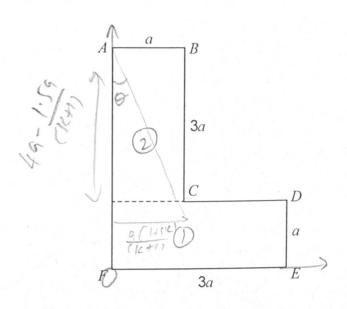


Figure 2

The uniform lamina ABCDEF, shown in Figure 2, consists of two identical rectangles with sides of length a and 3a. The mass of the lamina is M. A particle of mass kM is attached to the lamina at E. The lamina, with the attached particle, is freely suspended from A and hangs in equilibrium with AF at an angle θ to the downward vertical.

Given that $\tan \theta = \frac{4}{7}$, find the value of k.

(10)

2)	
	302/159/130/1059/
Area	(0.59) (7.59)
392	
	=692 (50)
COM	9).
-	1/4.5a+1.59 = 6/2
11.59	(159+7.59) (9)
0.59	
	(69) = 6(2)
(2).	(ga) (y)
A100 = 30	
	(x)= (a)
(OM)	9 (1.59)
(0.59)	
(2.50)	

Physics And Maths Lutor. c	COM
Question 5 continued	L <i>ea</i> ve blank
M(a) + km/(39) = $(15a) + (0)$ $M(K+1)(a) = (K+1)$ (41)	3k) = a (4k+215) = 4 (16+1)
(9+3kg): (k+1)(i) = A(1+3kg)	$\frac{2}{4} \times \frac{(4)}{(4)(+2-5)} = \frac{4}{7}$
$\bar{\chi} = a(1+3k)$ $(k+1)$ $(k+2)$	= 4
y = 1-5.9 (K+1) 7+21	K = 16 K + 10'
$\frac{7}{7} = \frac{4}{7}$ $\frac{7}{7} = \frac{4}{7}$ $\frac{4a-y}{k+1} = \frac{4(k+1)-1.5}{k+1}$	= 3.
= 4K +4-1.5 K+1.	
G.(4K+2.5) = K+1	

DO NOT WRITE IN THIS AREA

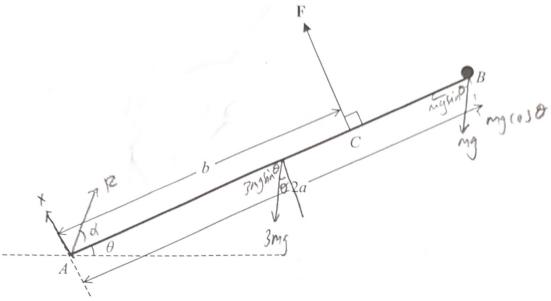


Figure 3

A uniform rod AB, of mass 3m and length 2a, is freely hinged at A to a fixed point on horizontal ground. A particle of mass m is attached to the rod at the end B. The system is held in equilibrium by a force F acting at the point C, where AC = b. The rod makes an acute angle θ with the ground, as shown in Figure 3. The line of action of F is perpendicular to the rod and in the same vertical plane as the rod.

(a) Show that the magnitude of **F** is
$$\frac{5mga}{b}\cos\theta$$
 (4)

The force exerted on the rod by the hinge at A is \mathbf{R} , which acts upwards at an angle ϕ above the horizontal, where $\phi > \theta$.

(b) Find

6.

- (i) the component of **R** parallel to the rod, in terms of m, g and θ ,
- (ii) the component of **R** perpendicular to the rod, in terms of a, b, m, g and θ . (5)
- (c) Hence, or otherwise, find the range of possible values of b, giving your answer in terms of a.(2)

(a) M(A).

Fb = 59 mg cos0

F=59 mg cos0

Samg cos0 +29 mg cos0

= 59 mg cos0

F=59 mg cos0

as req.

Question 6 continued		Leave blank
bi) p(>).		
D())(-)).	46-50 >0	
= Y-3mgsino-mgsino=0	5	
3149 4110 -119 1119 -0	46559	
4-4mg 9110	4 1 239	
	b>5/49.	
ii) R(1)		
CO / I C C /	· 50 6 b 6 2a	
upward-downward-o	i. 5q 1 b € 2q	
X+F = - 3mg cost -mgco	10=0	
N = - F + 4mg coso.		
) (11)		
1 (0 0 11		
X = - 5 mga coso + 4 mgcosE		
(
x=mqcos O(4b-59)		
Ь		
/a\		
(c) Ø > O		
0-050 tan(0-6)>0	
X>O		
mg(050 (4b-59)		
16		
- 10 miles		
5 mg 9 . cost		
<i>-</i>		C
	·	
	(Total 11 marks)	\perp

7.

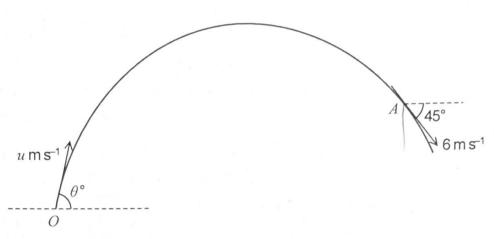


Figure 4

At time t=0, a particle P of mass 0.7 kg is projected with speed u m s⁻¹ from a fixed point O at an angle θ ° to the horizontal. The particle moves freely under gravity. At time t=2 seconds, P passes through the point A with speed 6 m s⁻¹ and is moving downwards at 45° to the horizontal, as shown in Figure 4.

Find

- (a) the value of θ ,

(b) the kinetic energy of P as it reaches the highest point of its path.

(3)

(6)

For an interval of T seconds, the speed, v m s⁻¹, of P is such that $v \le 6$

(c) Find the value of T.

(5)

(a) V(OSO = 6 COS45	-60045-Usind =9.8
	3
(1000 = 312(1)	
	19.6 = 600545+usino
4	, 2
(USINO = 98-15/2 -
U = USINO	5.
V = -60345.	using
a = - 9.8	using ucoso = tan 0
t=2	
37.000	98-15/2 - tan 9
	5 × 3, 12

tano = - 15+4912	(()
	3/2
9 = 74.6° W	6.
Magazar and a sin - de constituente maior per está de la de de discourse ano	
	(6 - (2NZ)
KE is scalar	6 - (3 N C)
: 1x0-7x12	= 312> Vertica
2	compune
Ucoso > Horizontal	Called the Francisco
	$=3\sqrt{2}$
and- Uvertical = 0.	V =-3 /2
	0 = -9.8
from egn (2)	t = 1
110 A - 21	v= u + at
UCO10=312.	-3/2 = 3/2 - 9t
1 × 0. 2 × (3/2)2	t= 0.8658
X 0. 7 X () V2)	<u>~</u> 0.87
-6.37	
The state of the s	
A Property of the second secon	
San Barrier	50 N